Меню
Бесплатно
Главная  /  Свадебные прически  /  Источники энергии. Реферат: Источники энергии Возобновляемые источники энергии

Источники энергии. Реферат: Источники энергии Возобновляемые источники энергии

Подобные документы

    Перспективные типы двигателей внутреннего сгорания, их экономичность; альтернативные виды топлива для ДВС. Изменение процессов подачи топлива, применение присадок; фильтры и катализаторы выхлопных газов. Системы локальной очистки воздуха над магистралями.

    реферат , добавлен 05.08.2013

    Природные ресурсы, их рациональное использование и воспроизводство. Экономическое регулирование охраны окружающей среды. Основные виды используемой человеком энергии. Энергия термоядерного синтеза, способы ее получения. Альтернативные источники энергии.

    контрольная работа , добавлен 30.04.2009

    Основные выбросы, загрязняющие воздух. Механизмы эмиссии автотранспорта и распространения выбросов. Технические и организационные меры по снижению загрязнения воздуха выбросами автотранспорта. Альтернативные виды энергии и сравнение видов топлива.

    реферат , добавлен 25.06.2009

    Причины образования токсичных компонентов в отработанных газах ДВС. Описание альтернативных экологичных видов топлива для автомобилей: добавки водорода и водородсодержащих топлив, синтетическое жидкое топливо. Анализ эффективности двигателя на водороде.

    реферат , добавлен 11.01.2010

    Использование ветра и ветряных установок. Сооружение гигантских ветроэнергетических установок для получения энергии. Способы преобразования солнечных лучей в электрический ток. Использование и получение энергии приливных и отливных морских течений.

    реферат , добавлен 09.11.2008

    Понятие "полностью безотходная технология". Рекомендации по созданию малоотходных и ресурсосберегающих технологий. Огневые методы очистки. Химические загрязнения, основные способы уменьшения вреда от них. Альтернативные способы получения энергии.

    реферат , добавлен 16.02.2016

    Характеристика природных водных ресурсов: их состав и элементы, общая характеристика источников водоснабжения (поверхностные и подземные). Оценка природных вод как возможных источников водоснабжения, принципы и обоснование их выбора, требования.

    контрольная работа , добавлен 26.08.2013

    Мониторинг атмосферного воздуха в местах скопления автотранспорта. Необходимость совершенствования двигателя внутреннего сгорания для уменьшения выбросов. Альтернативные виды топлива. Автоматизированные системы управления городским транспортом.

    дипломная работа , добавлен 04.12.2010

    Влияние транспорта на окружающую среду. Устройство поршневых двигателей внутреннего сгорания, принцип их работы. Причины загрязнения воздуха отработавшими газами автомобилей. Альтернативные виды топлива. Защита окружающей среды, меры предосторожности.

    реферат , добавлен 11.12.2012

    Состав и структура экологической системы. Биотический круговорот веществ и энергия в экологической системе. Перенос веществ и энергии в природных экосистемах. Пример наземной экосистемы дубравы. Экологическая система в виде диаграммы потока энергии.

Основные генераторы энергии - это электрические станции: тепловые (ТЭС),гидравлически(ГЭС), атомные (АЭС), а также транспортные агрегаты (автомобили, тепловозы, теплоходы, тракторы и т.п.).Энергоносителями служат разные виды топлива: нефть, мазут, природный газ, уголь, бензин, дизельное топливо, уран, плутоний, а также гидроресурсы. Расширяется применение возобновляемых источников энергии (ВИА): ветряных, солнечных и приливных. Однако основным источником энергии пока остается органическое топливо. В разных странах вырабатывая на АЭС энергия составляет 10…20%, на ГЭС 4…20%. За счет ВИЭ получают всего 1…2% вырабатываемой энергии. Весьма важно, что на долю транспортных машин приходится более 60% суммарного количества вырабатываемой энергии.

При оценке развития энергетики и формирования энергетической программы следует исходить не только из задачи выработки требуемого количества энергии, но и необходимо учитывать имеющиеся ресурсы, экономические, экологические и социальные факторы.

Для получения целостного представления о перспективах и проблемах развития энергетики на ближайшее время целесообразно оценить возможности каждого из направлений её развития, определяемых видом первичного источника.

Нефть . Установлено, что в недрах планеты имеется примерно 2000 млрд. т нефти, из которых надёжно разведано около 410млрд т. Ежегодное мировое потребление нефти приближается к 3 млрд. т. при естественном её воспроизводстве не более 1%. При планировании развития энергетики на перспективу приходится учитывать, с одной стороны, ограниченность природных запасов нефти, а с другой, − тот факт, что добыча нефти со временем усложняется. Уже сейчас примерно треть всей получаемой нефти добывается из скважин, пробуренных в дне морей и океанов. Глубина подводных скважин всё увеличивается и уже достигает 2 км. Увеличивается и глубина наземных скважин. Целесообразный предел глубин скважин для поиска нефти составляет 4…8 км.

Важное направление связано с развитием экономичных теплосиловых установок и в первую очередь дизелей, на долю которых в настоящее время приходится до 30% суммарной установленной мощности транспортных энергетических установок. К сожалению, использование дизелей приводит к загрязнению окружающей среды. Только судовые, тепловозные и промышленные дизели выбрасывают в год не менее 3 млн.т воздуха, загрязнённого оксидами азота, серы и углерода, углеводородами и сажей.

Уголь . Разведанные запасы угля в мире значительны, но качественно различны. Низкая калорийность углей ряда месторождений вызывает серьёзные трудности в их использовании. Эти угли невыгодно транспортировать на большие расстояния, так как значительная его часть составляют неорганические отходы. Можно перерабатывать эти угли в электрическую энергию на месте добычи. Однако при таком решении проблемы потребуется строительство сверхдальних линий электропередач (ЛЭП), в магистралях которых теряется до 10% энергии и в распределительных сетях - ещё около 40%.


Тем не менее, в ближайшей перспективе количество угля, используемого в качестве топлива в энергетике, хотя и медленно, но возрастать и превысит 9 млрд.т.

Часть добытого угля станет сырьём для производства на месте синтетического жидкого топлива, технология получения которого активно совершенствуется.

Кроме обычного природного газа имеются его большие запасы, связанные с водой в зонах вечной мерзлоты и океане. Есть ещё газ, растворённый в подземной гидросфере. Запасы такого газа значительны и расположены во всех регионах планеты. Разрабатываются технологии поднятия на поверхность подземных вод с последующим их возвращением обратно под Землю после отделения содержащегося в них газа.

Практика убедительно показала, что применение газа (в основном, метана) в качестве энергетического топлива эффективно. Можно прогнозировать, что в ближайшей перспективе приоритет будет за природным газом. И это несмотря на то, что добыча газа усложняется из-за необходимости всё большего углубления скважин и трудностями транспортирования.

Атомная энергетика . В настоящее время на ядерную энергию приходится около 6% мирового топливо – энергетического баланса и 17% производимой электроэнергии.

Наибольшая доля АЭС в производстве электроэнергии во Франции (75%), Литве (73%), Бельгии (~57%), Болгарии, Словацкой Республике, Швеции, Украине, Республике Корея (от 43 до 47%).

Тепловые реакторы на уране – 235 используют природный уран неэффективно (менее 1%). Поэтому они могут быть основой атомной энергетики лишь ограниченное время. Так за время жизни (50 лет) тепловой реактор мощностью 1 ГВт потребляет около 10 тыс. т природного урана при потенциально мировом ресурсе ~ 10 млн.т. Отсюда очевидно, что неизбежным становится использование в ядерном топливном цикле продуктов распада и в первую очередь плутония.

Быстрый реактор, обеспечивающий возможность на каждое разделившееся ядро воспроизводить более одного ядра нового ядерного топлива, позволяет резко увеличить использование природного урана (~ 200 раз). Реальной становится атомная энергетика мощностью 4000 ГВт, функционирующая в течение 2500 лет.

Однако крупные аварии, проблемы нераспространения ядерного оружия, обращения с облученным ядерным топливом и радиоактивными отходами привели к нереализованности первоначальных планов.

Большая работа проводится по повышению эксплуатационной безопасности. Разрабатываемые реакторы третьего-четвёртого поколений характеризуются оценкой риска для человека менее чем 10 в минус 7 степени, что существенно выше, чем на ТЭЦ.

Атомная энергетика, отвечающая современным требованиям безопасности и экономичности, способна в период после 2020 года обеспечить существенную часть прироста мировых потребностей в энергопроизводстве, объективно необходимого вследствие роста населения планеты. Атомная энергетика позволит стабилизировать потребление обычных топлив и выбросов химического горения.

ГЭС . Гидростанции дают относительно небольшое количество электроэнергии. Значительная инерционность ТЭС и АЭС при смене режимов и наиболее высокая экономичность при работе на одном заданном установившемся режиме приводит к необходимости использования ГЭС в качестве регуляторов Единой энергетической системы.

Практика создания крупных ГЭС с большими водохранилищами неминуемо связана с потерей для сельского хозяйства больших площадей пахотной земли, лугов и лесов, а большие искусственные водоёмы со временем приводят к экологически неблагоприятным последствиям.

Одновременно не вызывает сомнений целесообразность более широкого использования гидроэнергетики малых водных потоков с помощью так называемых рукавных переносных электростанций, состоящих из небольших генераторов и гидротурбин. Хотя мощность таких установок невелика – 1…5 кВт, но себестоимость киловатт-часа оказывается ниже, чем у аналогичных по мощности электростанций на основе ДВС.

ВИА . К числу возобновляемых источников энергии обычно относят солнечную энергию во всех её проявлениях: получаемую Землёй теплоту солнечного излучения, энергию ветра, приливов и отливов, энергию волн, а также прирост биомассы на Земле, биогаз из отходов животноводства и др. По оптимистическим оценкам, без ущерба для окружающей среды за счёт ВИЭ в принципе можно получить в несколько раз больше энергии, чем вырабатывается в мире в настоящее время.

Известно, что энергоустановки, работающие на углеродсодержащем топливе, выбрасывают в окружающую среду углекислый газ, улавливать который пока невозможно. В итоге растёт его концентрация, нарушая тепловой баланс планеты, что приводит к её разогреву (парниковому эффекту).

Такой неблагоприятной перспективы можно избежать путём расширения использования возобновляемых источников энергии. По оценкам специалистов вклад ВИЭ в мировую энергетику к 2020 году составит 9-10%.

Солнечная энергия является естественной для Земли, ей обязано своим существованием всё живое. Освоение методов и средств использования солнечной энергии в производстве и быту уже в настоящее время превращается в задачу глобальную для всего человечества.

Геотермальные энергоустановки используют температуру Земли. Это могут быть природные подземные запасы горячей воды или пара, а также закачка воды вглубь земли. Естественно, применение таких установок целесообразно в отдельных районах, например на Камчатке, в Исландии.

Внимание ученых – энергетиков привлекают перспективы использования

возобновляемой биомассы, ежегодный прирост которой оценивается в 107 млрд. т. Энергия, которой обладает такое количество биомассы, эквивалентна 40 млрд. т нефти.

Из зелёной массы в результате переработки получают высокооктановое топливо в виде эфиров и спиртов.

Энергосбережение . Задача обеспечения энергией путём наращивания энергетического потенциала непосильна даже для самых высокоразвитых стран. Для того чтобы темпы наращивания энерговооружённости были реальными, необходимо проводить активную энергосберегающую политику в двух направлениях: повышать экономичность самих энергетических установок и таким образом получать большее количество энергии, и повсеместно сокращать потери энергии и энергоресурсов.

Коэффициент полезного использования энергоресурсов в Украине составляет примерно 40%. Следовательно, 60% - это потери, из которых примерно 20% могут быть отнесены к предотвратимым. Для снижения энергопотребления требуется активное проведение соответствующей государственной политики с внедрением прогрессивных технологий и оборудования. Можно обеспечить значительную экономию энергии и в социально−бытовой сфере, если, например, усилить теплозащитную способность строящих зданий. В настоящее время существуют строи- тельные материалы, позволяющие экономить до 50% теплоты, расходуемых на обогрев зданий. Стены зданий, покрытые специальными прозрачными панелями, пропускают теплоту лучей солнца и не отдают теплоту наружу. Значительную экономию даёт переход для освещения на люминесцентные лампы, которые потребляют энергии примерно в 8 раз меньше чем лампы накаливания. Внедрение энерго- и ресурсосберегающих технологий − дело длительное, трудное и дорогое, но неизбежное и в конечном итоге окупаемое

Экология и защита окружающей среды . Развитие энергетики неразрывно связано с проблемами экологии и зашиты окружающей среды. Электростанции, использующие уголь, вбрасывают ежегодно около 300…350 млн. т золы, свыше 100…120 млн. т оксидов серы и азота. Зола угольных ТЭС содержит радиоактивные изотопы калия, радия и тория, количество которых почти в 10 раз больше (по дозе облучения), чем в выбросах нормально работающих АЭС. По сравнению с лучшими станциями мира наши станции выбрасывают на порядок больше твёрдых частиц, в 3 раза больше серы, в 2 раза - оксидов азота. Серные газы в окружающей среде особенно вредны для населения, животного мира, почвы и водоёмов. Современные очистные сооружения требуют больших средств. Вполне справедливо утверждение, что чистую энергетику бесплатно получить невозможно. Передовые промышленно развитые страны расходуют до 5% валового национального продукта.

Серьёзные экологические проблемы возникают с развитием атомной энергетики и, в частности, связанных с необходимостью захоронения на длительный срок её отходов.

Развитие атомной энергетики осложняется реакцией растительного и животного мира на радиоактивные нуклиды, накапливающиеся в почве. Если к естественным нуклидам мир эволюционно приспособился, то иначе реагируют они на искусственные нуклиды, которые хорошо усваиваются растениями и животными. Они могут накапливаться до концентрации в 70…100 раз большей, чем в окружающей почве, что очень опасно.

Определённые трудности возникают на Земле и в связи с задачей сохранения для людей запасов пресной воды, широко используемой в качестве теплоносителя в энергетических системах. Известно, что в настоящее время запасы пресной воды составляют всего 2,8% от массы Земли и только 0,3% доступны для использования человеком. Таким образом, задача экономии пресной воды или замена её опреснённой морской является актуальной уже в настоящее время.

Всё сказанное свидетельствует о том, что подход к проблемам развития энергетики только с позиций экономических неприемлем. Необходимо увязывать экономические аспекты с социальными и экологическими.

Работа добавлена на сайт сайт: 2015-10-28

Узнай цену своей работы

Введение
Почему же именно сейчас, как никогда остро, встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие? Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце прошлого века самая распространенная сейчас энергия - электрическая - играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. Вполне реален прогноз, по которому в 2000 году будет произведено 30 тысяч миллиардов киловатт-часов! Гигантские цифры, небывалые темпы роста! И все равно энергии будет мало, потребности в ней растут еще быстрее.

Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней.

Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях. Конечно, способы сжигания топлива стали намного сложнее и совершеннее.

Новые факторы - возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды- потребовали нового подхода к энергетике. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Сейчас многие из этих стран, особенно в районе Персидского залива, буквально купаются в золоте, не задумываясь, что через несколько десятков лет эти запасы иссякнут. Что же произойдет тогда- а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Особенно призадумались тогда те страны, где нет собственных запасов нефти и газа и которым приходится их покупать.

А пока в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников, которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Решение этой задачи исследователи ищут на разных путях. Самым заманчивым, конечно, является использование вечных, возобновляемых источников энергии-энергии текущей воды и ветра, океанских приливов и отливов, тепла земных недр, солнца.


Виды энергии

В нашем индустриальном обществе от энергии зависит все. С ее помощью движутся автомобили, улетают в космос ракеты. С ее помощью можно поджарить хлеб, обогреть жилище и привести в действие кондиционеры, осветить улицы, вывести в море корабли.

Могут сказать, что энергией являются нефть и природный газ. Однако это не так. Чтобы освободить заключенную в них энергию, их необходимо сжечь, так же как бензин, уголь или дрова. Мир наполнен энергией, которая может быть использована для совершения работы разного характера. Энергия может находиться в людях и животных, в камнях и растениях, в ископаемом топливе, деревьях и воздухе, в реках и озерах. Однако самыми большими резервуарами накопленной энергии являются океаны - огромные пространства беспрерывно перемещающихся водных потоков, покрывающих около 71 % всей земной поверхности. Рассмотрим основные виды энергии, которые использует человек для своих нужд. На текущий момент это:

· Энергия солнца

· Ветровая энергия

· Энергия рек

· Энергия земли

· Энергия океана

· Атомная энергия

Рассмотрим их более подробно.

1.1 Энергия солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно.

Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.

Заметим, что использование всего лишь 0.0125% этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5% - полностью покрыть потребности на перспективу

К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км2 !

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км2, требует примерно 10^4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17*10^9 тонн.

Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1*10^6 до 3*10^6 км2. В то же время общая площадь пахотных земель в мире составляет сегодня 13*10^6 км2.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт*год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.
1.2 Ветровая энергия.
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Почему же столь обильный, доступный, да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

Техника 20 века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания.

В наши дни к созданию конструкций ветроколеса сердца любой ветроэнергетической установки привлекаются специалисты самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.
1.3
Энергия рек

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Но когда наступил золотой век электричества, произошло возрождение водяного колеса, правда, уже в другом обличье в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода, тем более что многовековой опыт у нее уже имелся.

Преимущества гидроэлектростанций очевидны постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое кол-во материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным.

Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное кол-во энергии.
1.4
Энергия земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия "страна льда" в дословном переводе полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников (еще древние римляне к знаменитым баням термам Каракаллы подвели воду из-под земли), жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно. Столица - Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников.

Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло, названном так в честь французского инженера Лардерелли, который еще в 1827 году составил проект использования многочисленных в этом районе горячих источников. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, ив наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч кило-

ватт.

1.5
Энергия мирового океана

Известно, что запасы энергии в Мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 10^26 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 10^18 Дж. Однако пока что люди умеют утилизовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Однако происходящее весьма быстрое истощение запасов ископаемых топлив (прежде всего нефти и газа), использование которых к тому же связано с существенным загрязнением окружающей среды (включая сюда также и тепловое "загрязнение", и грозящее климатическими последствиями повышение уровня атмосферной углекислоты), резкая ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляет ученых и инженеров уделять все большее внимание поискам возможностей рентабельной утилизации обширных и безвредных источников энергии и не только перепадов уровня воды в реках, но и солнечного тепла, ветра и энергии в Мировом океане.

Наиболее очевидным способом использования океанской энергии представляется постройка приливных электростанций (ПЭС). С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт*ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт в Мезенском заливе на Баренцевом море.

Неожиданной возможностью океанской энергетики оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей келп, легко перерабатываемых в метан для энергетической замены природного газа. По имеющимся оценкам, для полного обеспечения энергией каждого человека - потребителя достаточно одного гектара плантаций келпа.

Большое внимание приобрела "океанотермическая энергоконверсия" (ОТЭК), т.е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей как пропан, фреон или аммоний. В какой-то мере аналогичными, но как пока кажется, вероятно, более далекими представляются перспективы получения электроэнергии за счет различия между соленой и пресной, например морской и речной водой.

Уже немало инженерного искусства вложено в макеты генераторов электроэнергии, работающих за счет морского волнения, причем обсуждаются перспективы электростанций с мощностями на многие тысячи киловатт. Еще больше сулят гигантские турбины на таких интенсивных и стабильных океанских течениях, как Гольфстрим.

Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время. Вместе с тем следует ожидать, что творческий энтузиазм, искусство и изобретательность научно-инженерных работников улучшить существующие и создадут новые перспективы для промышленного использования энергетических ресурсов Мирового океана. Думается, что при современных темпах научно-технического прогресса существенные сдвиги в океанской энергетике должны произойти в ближайшие десятилетия.

Океан наполнен внеземной энергией, которая поступает в него из космоса. Она доступна и безопасна, и не загрязняет окружающую среду, неиссякаема и свободна.

Из космоса поступает энергия Солнца. Она нагревает воздух и образует ветры, вызывающие волны. Она нагревает океан, который накапливает тепловую энергию. Она приводит в движение течения, которые в то же время меняют свое направление под воздействием вращения Земли.

Из космоса же поступает энергия солнечного и лунного притяжения. Она является движущей силой системы Земля - Луна и вызывает приливы и отливы. Океан - это не плоское, безжизненное водное пространство, а огромная кладовая беспокойной энергии. Здесь плещут волны, рождаются приливы и отливы, пересекаются течения, и все это наполнено энергией. Бакены и маяки, использующие энергию волн, уже усеяли прибрежные воды Японии. В течение многих лет бакены – свистки береговой охраны США действуют благодаря волновым колебаниям.

Сегодня вряд ли существует прибрежный район, где не было бы своего собственного изобретателя, работающего над созданием устройства, использующего энергию волн.

Начиная с 1966 года два французских города полностью удовлетворяют свои потребности в электроэнергии за счет энергии приливов и отливов. Энергоустановка на реке Ранс (Бретань), состоящая из двадцати четырех реверсивных турбогенераторов, использует эту энергию. Выходная мощность установки 240 мегаватт - одна из наиболее мощных гидроэлектростанций во Франции.

В 70-х годах ситуация в энергетике изменилась. Каждый раз, когда поставщики на Ближнем Востоке, в Африке и Южной Америке поднимали цены на нефть, энергия приливов становилась все более привлекательной, так как она успешно конкурировала в цене с ископаемыми видами топлива.

Вскоре за этим в Советском Союзе, Южной Корее и Англии возрос интерес к очертаниям береговых линий и возможностям создания на них энергоустановок. В этих странах стали всерьез подумывать об использовании энергии приливов волн и выделять средства на научные исследования в этой области, планировать их.

Не так давно группа ученых океанологов обратила внимание на тот факт, что Гольфстрим несет свои воды вблизи берегов Флориды со скоростью 5 миль в час. Идея использовать этот поток теплой воды была весьма заманчивой. Возможно ли это? Смогут ли гигантские турбины и подводные пропеллеры, напоминающие ветряные мельницы, генерировать электричество, извлекая энергию из течений и воли? "Смогут" - таково в 1974 году было заключение Комитета Мак-Артура, находящегося под эгидой Национального управления по исследованию океана и атмосферы в Майами (Флорида).Общее мнение заключалось в том, что имеют место определенные проблемы, но все они могут быть решены в случае выделения ассигнований, так как "в этом проекте нет ничего такого, что превышало бы возможности современной инженерной и технологической мысли".

Один из ученых, наиболее склонный к прогнозам на будущее, предсказал, что электричество, полученное при использовании энергии Гольфстрима, может стать конкурентоспособным уже в 80-е годы.

В океане существует замечательная среда для поддержания жизни, в состав которой входят питательные вещества, соли и другие минералы. В этой среде растворенный в воде кислород питает всех морских животных от самых маленьких до самых больших, от амебы до акулы. Растворенный углекислый газ точно так же поддерживает жизнь всех морских растений от одноклеточных диатомовых водорослей до достигающих высоты 200-300 футов (60-90 метров) бурых водорослей. Морскому биологу нужно сделать лишь шаг вперед, чтобы перейти от восприятия океана как природной системы поддержания жизни к попытке начать на научной основе извлекать из этой системы энергию.

При поддержке военно-морского флота США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 40 футов (12 метров) под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. Ферма была небольшая. По сути своей, все это было лишь экспериментом. На ферме выращивались гигантские калифорнийские бурые водоросли.

По мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), "до 50 % энергии этих водорослей может быть превращено в топливо - в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек".

Океан всегда был богат энергией волн, приливов и течений. В древние времена, наблюдая движение водных потоков, рыбаки ничего не знали о "приливной энергии" или о "выращивании бурых водорослей", однако они знали, что выходить в море легче во время отлива, а возвращаться обратно - во время прилива. Им, конечно, было известно и о том, что иногда волны тяжело и страшно бьют о берег, выбрасывая камни на его скалы, и о "морских реках", которые всегда выносили их к нужным островам, и о том, что они всегда смогут прокормиться моллюсками, ракообразными, рыбой и съедобными водорослями, растущими в океане.В наши дни, когда возросла необходимость в новых видах топлива, океанографы, химики, физики, инженеры и технологи обращают все большее внимание на океан как на потенциальный источник энергии.

В океане растворено огромное количество солей. Может ли соленость быть использована, как источник энергии?

Может. Большая концентрация соли в океане навела ряд исследователей Скриппского океанографического института в Ла-Колла (Калифорния) и других центров на мысль о создании таких установок. Они считают, что для получения большого количества энергии вполне возможно сконструировать батареи, в которых происходили бы реакции между соленой и несоленой водой.

Температура воды океана в разных местах различна. Между тропиком Рака и тропиком Козерога поверхность воды нагревается до 82 градусов по Фаренгейту (27 C). На глубине в 2000 футов (600 метров) температура падает до 35,36,37 или 38 градусов по Фаренгейту (2-3.5 С). Возникает вопрос: есть ли возможность использовать разницу температур для получения энергии? Могла бы тепловая энергоустановка, плывущая под водой, производить электричество?

Да, и это возможно.

В далекие 20-е годы нашего столетия Жорж Клод, одаренный, решительный и весьма настойчивый французский физик, решил исследовать такую возможность. Выбрав участок океана вблизи берегов Кубы, он сумел-таки после серии неудачных попыток получить установку мощностью 22 киловатта. Это явилось большим научным достижением и приветствовалось многими учеными.

Используя теплую воду на поверхности и холодную на глубине и создав соответствующую технологию, мы располагаем всем необходимым для производства электроэнергии, уверяли сторонники использования тепловой энергии океана. "Согласно нашим оценкам, в этих поверхностных водах имеются запасы энергии, которые в 10 000 раз превышают общемировую потребность в ней".

"Увы, - возражали скептики, - Жорж Клод получил в заливе Матансас всего 22 киловатта электроэнергии. Дало ли это прибыль?" Не дало, так как, чтобы получить эти 22 киловатта, Клоду пришлось затратить 80 киловатт на работу своих насосов.

Сегодня профессор Скриппского института океанографии Джон Исаак сделает вычисления более аккуратно. По его оценкам, современная технология позволит создавать энергоустановки, использующие для производства электричества разницу температур в океане, которые производили бы его в два раза больше, чем общемировое потребление на сегодняшний день. Это будет электроэнергия, производимая электростанцией, преобразующей термальную энергию океана (ОТЕС).

Конечно, это - прогноз ободряющий, но даже если он оправдается, результаты не помогут разрешению мировых энергетических проблем. Разумеется, доступ к запасам электроэнергии ОТЕС предоставляет великолепные возможности, но (по крайней мере пока) электричество не поднимает в небо самолеты, не будет двигать легковые и грузовые автомобили и автобусы, не поведет корабли через моря.

Однако самолеты и легковые автомобили, автобусы и грузовики могут приводиться в движение газом, который можно извлекать из воды, а уж воды-то в морях достаточно. Этот газ - водород, и он может использоваться в качестве горючего. Водород - один из наиболее распространенных элементов во Вселенной. В океане он содержится в каждой капле воды. Помните формулу воды? Формула HOH значит, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Извлеченный из воды водород можно сжигать как топливо и использовать не только для того, чтобы приводить в движение различные транспортные средства, но и для получения электроэнергии.

Все большее число химиков и инженеров с энтузиазмом относится к "водородной энергетике" будущего, так как полученный водород достаточно удобно хранить: в виде сжатого газа в танкерах или в сжиженном виде в криогенных контейнерах при температуре 423 градуса по Фаренгейту (-203 С). Его можно хранить и в твердом виде после соединения с железо-титановым сплавом или с магнием для образования металлических гидридов. После этого их можно легко транспортировать и использовать по мере необходимости.

Один из наиболее перспективных из них - электролиз воды. (Через воду пропускается электрический ток, в результате чего происходит химический распад. Освобождаются водород и кислород, а жидкость исчезает.)

В 60-е годы специалистам из НАСА удалось столь успешно осуществить процесс электролиза воды и столь эффективно собирать высвобождающийся водород, что получаемый таким образом водород использовался во время полетов по программе "Аполлон".

Таким образом, в океане, который составляет 71 процент поверхности планеты, потенциально имеются различные виды энергии - энергия волн и приливов; энергия химических связей газов, питательных веществ, солей и других минералов; скрытая энергия водорода, находящегося в молекулах воды; энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

Такие количества энергии, многообразие ее форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка. В то же время не возникает необходимости зависеть от одного - двух основных источников энергии, какими, например, являются давно использующиеся ископаемые виды топлива и ядерного горючего, методы получения которого были разработаны недавно.

Более того, в миллионах прибрежных деревень и селений, не имеющих сейчас доступа к энергосистемам, будет тогда возможно улучшить жизненные условия людей. Жители тех мест, где на море бывает сильное волнение, смогут конструировать и использовать установки для преобразования энергии волн. Живущие вблизи узких прибрежных заливов, куда во время приливов с ревом врывается вода, смогут использовать эту энергию. Для всех остальных людей энергия океана в открытом водном пространстве будет преобразовываться в метан, водород или электричество, а затем передаваться на сушу по кабелю или на кораблях.

Разумеется, трудно даже представить себе переход от столь привычных, традиционных видов топлива - угля, нефти и природного газа - к незнакомым, альтернативным методам получения энергии.

Разница температур? Водород, металлические гидриды, энергетические фермы в океане? Для многих это звучит как научная фантастика.

И тем не менее несмотря на то что извлечение энергии океана находятся на стадии экспериментов и процесс ограничен и дорогостоящ, факт остается фактом, что по мере развития научно-технического прогресса энергия в будущем может в значительной степени добываться из моря. Когда - зависит от того, как скоро эти процессы станут достаточно дешевыми. В конечном итоге дело упирается не в возможность извлечения из океана энергии в различных формах, а в стоимость такого извлечения, которая определит, насколько быстро будет развиваться тот или иной способ добычи.

Когда бы это время ни наступило, переход к использованию энергии океана принесет двойную пользу: сэкономит общественные средства и сделает более жизнеспособной третью планету Солнечной системы - нашу Землю.

Впервые удар по общественному карману был нанесен в 1973 году подъемом цен на ископаемые виды топлива. Особенно возросли цены на нефть - основной вид топлива в XX веке, используемый в промышленности, сельском хозяйстве, для отопления. Вслед за этим произошло повышение уровня инфляции, а поскольку научные исследования и эксперименты тоже требуют ассигнований, поиски новых видов топлива подняли цены еще выше.

Ископаемые виды топлива истощаются, мы вынуждены их экономить и увеличивать энергообеспечение за счет строительства ядерных реакторов, которые требуют значительных финансовых затрат и вызывают опасения у людей, живущих вблизи. Конечно, энергопотребление снизится, если быть более экономными. В США, население которых составляет 5,3 % от общемирового и где используется 35 % всех видов ископаемого топлива и гидроэлектроэнергии мира, потребление энергии может быть легко снижено до 30 - 32 % , а то и до 25 %. Существует даже мнение, что по справедливости Соединенные Штаты должны снизить потребление энергии до 5,3 %.

Экономика, однако, лишь одна сторона дела. Другая сторона относится к странам развивающимся, которые стараются достичь уровня жизни промышленно развитых стран, определяющегося использованием большого количества энергии. Сегодня народы Азии, Африки и Латинской Америки стремятся перейти от общества, в котором используется в основном физический труд, к обществу с развитой индустрией.

Для того чтобы удовлетворить потребность в равноправном распределении дешевой энергии между всеми странами, потребуется такое ее количество, которое, возможно, в тысячи раз превысит сегодняшний уровень потребления, и биосфера уже не справится с загрязнением, вызываемым использованием обычных видов топлива. Тем не менее президент Института исследований в области электроэнергии в Пало Альто (Калифорния) Чонси Старр полагает: "Необходимо признать, что мировое потребление энергии будет развиваться именно в этом направлении и так быстро, как только позволят политические, экономические и технические факторы".

Так как соревнование за обладание истощающимися видами топлива обостряется, расход общественных средств будет расти. Рост этот продолжится, так как необходимо бороться с загрязнением воздуха и воды, теплотой, выделяющейся при сгорании ископаемых видов топлива.

Но стоит ли волноваться в поисках новых источников ископаемого топлива? Зачем дискутировать по вопросу о строительстве ядерных реакторов? Океан наполнен энергией, чистой, безопасной и неиссякаемой. Она там, в океане, только и ждет высвобождения. И это - преимущество номер один.

Второе преимущество заключается в том, что использование энергии океана позволит Земле быть в дальнейшем обитаемой планетой. А вот альтернативный вариант, предусматривающий увеличение использования органических и ядерных видов топлива, по мнению некоторых специалистов, может привести к катастрофе: в атмосферу станет выделяться слишком большое количество углекислого газа и теплоты, что грозит смертельной опасностью человечеству.

"Пустяки, - усмехаются скептики. - Мы постоянно совершенствуем воздушные фильтры и очистные сооружения. Еще год-два- и фабричные дымовые трубы будут выпускать практически чистый воздух. Разве мы не очищаем выхлопные газы автомобилей? Скоро вы вообще забудете, что такое пары двуокиси серы."

Тем не менее углекислый газ и теплота, выделяемые в атмосферу дымовыми трубами фабрик и других промышленных предприятий, а иногда и большими многоквартирными комплексами, которые используют ископаемые виды топлива, внушают большое беспокойство.

Но кто заметит, что в воздухе стало больше углекислого газа? Он бесцветен и не имеет запаха. Он пузырится в прохладительных напитках. А кто заметит постепенное, медленное повышение атмосферной температуры Земли на один, два или три градуса по Фаренгейту? Заметит планета, когда углекислый газ через некоторое время окутает ее подобно одеялу, которое перестанет пропускать избыточное тепло в космос.

Жак Кусто, пионер освоения и исследования океана, считает: "Когда концентрация углекислого газа достигнет определенного уровня, мы окажемся как будто в парнике". Это значит, что теплота, выделяемая Землей, будет задерживаться под слоем стратосферы. Накапливающееся тепло повысит общую температуру. А увеличение ее даже на один, два или три градуса по Фаренгейту приведет к таянию ледников. Миллионы тонн растаявшего льда поднимут уровень морей на 60 метров. Города на побережье и в долинах больших рек окажутся затопленными.

По данному вопросу, как и по многим другим, ученые разделились на два лагеря. В одном лагере считают, что утолщающееся одеяло углекислого газа вызовет повышение температуры и приведет к таянию ледников, то есть, по определению доктора Говарда Уилкокса, превратить Землю в парник. Сторонники другого лагеря полагают, что то же самое одеяло будет преграждать путь теплу, излучаемому солнцем, что станет причиной наступления новой эры оледенения.

Итак, что же человечество должно делать? Будем ли мы истощать остатки ископаемого топлива, строить все большее число ядерных реакторов, рискуя изменить температуру атмосферы, или же обратимся к океану - кладезю неиссякаемой энергии - и будем искать способ извлечения этой энергии для достижения наших целей - вот в чем заключается вопрос.

1.6 Атомная энергия.
Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы.

Главным, сразу же заинтересовавшим исследователей, был вопрос: откуда берется энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды? Под сомнение ставился либо закон сохранения энергии, либо утвержденный веками принцип неизменности атомов? Огромная научная смелость требовалась от ученых, которые перешагнули границы привычного, отказались от устоявшихся представлений.

Такими смельчаками оказались молодые ученые Эрнест Резерфорд и Фредерик Содди. Два года упорного труда по изучению радиоактивности привели их к революционному по тем временам выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучением энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт! Некоторые ученые высказывают мнение, что к 21 веку около половины всей электроэнергии в мире будет вырабатываться на атомных электростанциях.

В принципе энергетический ядерный реактор устроен довольно просто в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Самый распространенный в настоящее время тип реактора водографитовый. Еще одна распространенная конструкция реакторов так называемые водо-водяные. В них вода не только отбирает тепло от твэлов, но и служит замедлителем нейтронов вместо графита. Конструкторы довели мощность таких реакторов до миллиона киловатт. Могучие энергетические агрегаты установлены на Запорожской, Балаковской и других атомных электростанциях. Вскоре реакторы такой конструкции, видимо, догонят по мощности и рекордсмена полуторамиллионик с Игналинской АЭС.

Но все-таки будущее ядерной энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предложены учеными, - реакторами на быстрых нейтронах. Их называют еще реакторами размножителями. Обычные реакторы используют замедленные нейтроны, которые вызывают цепную реакцию в довольно редком изотопе- уране-235, которого в природном уране всего около одного процента. Именно поэтому приходится строить огромные заводы, на которых буквально просеивают атомы урана, выбирая из них атомы лишь одного сорта урана-235. Остальной уран в обычных реакторах использоваться не может. Возникает вопрос: а хватит ли этого редкого изотопа урана на сколько-нибудь продолжительное время или же человечество вновь столкнется с проблемой нехватки энергетических ресурсов?

Более тридцати лет назад эта проблема была поставлена перед коллективом лаборатории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом Лейпунским была предложена конструкция реактора на быстрых нейтронах. В 1955 году была построена первая такая установка.

Преимущества реакторов на быстрых нейтронах очевидны. В них для получения энергии можно использовать все запасы при- родных урана и тория, а они огромны только в Мировом океане растворено более четырех миллиардов тонн урана.

Но все 400 атомных электростанции, работающих сейчас на планете, не могут создать угрозу, хотя бы сравнимую с угрозой, исходящей от 50 тысяч боеголовок.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она безусловно будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.



Заключение.
За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан. Солнце светило и обогревало человека всегда: и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма". Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти. И вот новый виток:в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники. Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков. Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная.

Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Рассказ об энергии может быть бесконечен, неисчислимы альтернативные формы ее использования при условии, что мы должны разработать для этого эффективные и экономичные методы. Не так важно, каково ваше мнение о нуждах энергетики, об источниках энергии, ее качестве, и себестоимости. Нам, по-видимому. следует лишь согласиться с тем, что сказал ученый мудрец, имя которого осталось неизвестным: "Нет простых решений,есть только разумный выбор".






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

В настоящее время проблема охраны природы и рационального использования её ресурсов приобрела огромное мировое значение. Человек осознает, что настало время позаботиться и о природе: она не может всё время отдавать, она не способна вынести нагрузки, которые от неё требует человек.

Ознакомимся с различными видами получения энергии и экспериментально исследуем два вида чистых источников энергии на моделях ветроэнергетической установки и солнечной электростанции.

1. Экологические проблемы источников энергии

На уроках географии мы получаем знания о природных ресурсах, условиях их залегания и методах добычи. Так же мы узнаем о том, какие страны обладают ими в полной мере, а какие зависят от поставок из-за рубежа. На уроках физики мы изучаем возможности получения различных видов энергии и превращения одного вида энергии в другой. Биология дает нам знания о том, как влияет окружающий мир на живые организмы, и, в частности на человека. Но человек, своей деятельностью меняет мир природы, и не в лучшую сторону.

Загрязнения, выбросы твердых веществ, двуокиси серы, оксидом углерода, азота, углеводородов от промышленных предприятий составляют около 97% суммарных выбросов. Происходит загрязнение водных ресурсов сточными водами, загрязнение атмосферы в результате выделения пыли и газообразных веществ. При сжигании органического топлива вся его масса превращается в отходы, причем продукты сгорания в несколько раз превышают массу использованного топлива за счет включения кислорода и азота воздуха (Рисунок 1).

Происходят многие существенные изменения в ландшафтах. При добывании ископаемых создаются огромные насыпи пустой породы (Рисунок 2). Они отрицательно влияют на водный режим окружающих земель в радиусе нескольких десятках километров: сохнут колодцы, скудеет растительность при формировании отвалов пород.

Всё, что перечислено, явно указывает на то, что переход на возобновляемые источники энергии неизбежен.

1.1.Возобновляемые источники энергии.

Возобновляемые ресурсы - природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет.

В современной мировой практике к возобновляемым источникам энергии (ВИЭ) относят водную, солнечную, ветровую, геотермальную, гидравлическую энергии; энергию морских течений, энергию волн, приливов, температурного градиента морской воды, разности температур между воздушной массой и океаном, энергию тепла Земли, энергию биомассы животного, растительного и бытового происхождения.

1.2.Невозобновляемые источники энергии.

Это источники энергии, которые используют природные ресурсы земли, в результате чего их запасы не восполняются. По прогнозам специалистов, даже при самом оптимистическом подходе, запасы наиболее удобных для использования и относительно недорогих видов топлива – нефти и газа при современных темпах их потребления будут в основном использованы через 30-50 лет. Кроме того эти ресурсы являются основным сырьем для химической промышленности, сжигая их мы на самом деле сжигаем огромное количество изделий из синтетических материалов.

Примеры невозобновляемых ресурсов: нефть, уголь, природный газ, торф, гидраты метана, руды металлов, лес.

Путь сжигания невозобновляемых запасов топлива отрицательно воздействует на окружающую среду. Нефть, разливаясь из танкеров, терпящих бедствие, губит мировой океан. добыча, и транспортировка, и переработка нефти сопряжена с вредными воздействиями на окружающую среду. Часто происходят разливы нефти в результате ее утечки из скважин или при транспортировке. Мы видим, какой вред наносят природе аварии нефтяных танкеров.

Гибнут рыбы и птицы, живущие на побережьях. Разливы нефти близко от берегов особенно вредны для морских птиц, икры и мальков рыб, обитающих около поверхности в прибрежных водах.

Горят нефтяные вышки, загрязняя атмосферу. При сжигании нефтепродуктов при переработке в атмосферу выбрасывается большое количество углекислого газа.

2. Возобновляемые источники энергии

2.1.Энергия ветра.

1) Использование.

Энергия ветра впервые использовалась на парусных судах, позже появились ветряные мельницы (Рисунок 3). Потенциал энергии ветра подсчитан более менее точно: по оценке Всемирной метеорологической организации ее запасы в мире составляют 170 трлн. кВт·ч в год. Ветроэнергоустановки разработаны и опробованы настолько основательно, что вполне прозаической выглядит картина сегодняшнего небольшого ветряка, снабжающего дом энергией вместе с фермой. Главным фактором использования ВЭУ является то, что это экологически чистый источник и он не требует затрат на защиту от загрязнения окружающей среды.

У энергии ветра есть несколько существенных недостатков. Она сильно рассеяна в пространстве, поэтому необходимы ветроэнергоустановки (ВЭУ), способные постоянно работать с высоким КПД. Ветер очень непредсказуем - часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции не безвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но, эти недостатки можно уменьшить, а то и вовсе свести их на нет. В настоящее время ветроэнергоустановки (ВЭУ) способны эффективно работать при самом слабом ветре. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть столь же автоматически переводится во флюгерное положение, так что авария исключается.

Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей и обычных ветряков. Энергию ветра уже используют для зарядки мобильных телефонов (Рисунок 4).

Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки при этом стоят рядами на обширном пространстве. Такие “фермы” есть в США, во Франции, в Англии, но они занимают много места; в Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где ветер устойчивее, чем на суше (Рисунок 5).

Выработка электроэнергии с помощью ветра имеет ряд преимуществ:

а) экологически чистое производство без вредных отходов;

б) экономия дефицитного дорогостоящего топлива (традиционного и для атомных станций);

в) доступность;

г) практическая неисчерпаемость.

Места установки ВЭУ: на полях, где хорошие розы ветров, на морях, где преобладает разность давлений и создаются воздушные течения.

Эффективность ВЭУ зависит от режима и длительности работы, сезонной периодичности, от скорости и направления ветра.

Это мы проверим на экспериментальной установке.

2) Экспериментальная модель ВЭУ.

Она состоит из двух вентиляторов. Один из них имитирует ветер, а другой представляет собой работающую ВЭУ (Рисунок 6). Наша ВЭУ соединена через компьютер с преобразователем энергии ветра в электрическую энергию, в механическую энергию, энергию радиотелефонной связи колебательного контура приемника. На панели установки находится тумблер, переключающий все эти функции.

а) Первый эксперимент заключается в следующем: мы с помощью вентилятора-имитатора задаем силу ветра приближая и удаляя его от вентилятора, представляющего ВЭУ. На компьютере мы получаем таблицу зависимости мощности ветра и получаемого напряжения электрического тока.

По результатам эксперимента получили график зависимость мощности энергии вырабатываемой ВЭУ от силы ветра:

Мы установили, что потенциально энергетически выгодной является установка ВЭУ в таких местах, где среднегодовые скорости ветра превышают определенную величину и имеют часто повторяющуюся величину скоростей в диапазоне от 4 м/с до 9 м/с.

б) Для более полного использования энергии ветровое колесо должно занимать определенное положение относительно ветрового потока, ветровые двигатели многих типов оборудуют системами автоматической ориентации, чтобы плоскость вращения колеса была перпендикулярна направлению скорости ветра.

В эксперименте изменяли угол направления ветра, смещая вентилятор-имитатор под углом к ВЭУ. При этом на компьютере мы получаем таблицу мощности вырабатываемой энергии от угла поворота вентилятора-имитатора.

По результатам эксперимента получаем график зависимости мощности вырабатываемой ВЭУ энергии от угла направления ветра.

в) Еще одна возможность эксперимента заключалась в запасании энергии полученной от ВЭУ в аккумуляторах. Для этого на установке есть тумблер по переключению подачи энергии и аккумуляторы.

Это актуально в связи с перерывами в работе ВЭУ из-за отсутствия ветра или понижения силы ветра, и для потребителя является приемлемым возможность периодического использования энергии ветра, переработанного и запасенного заранее в периоды работы ВЭУ.

Фото 1. (Механизм подъема грузов)

Так же установка позволяет рассмотреть преобразование энергии, полученной ВЭУ, в электрическую, механическую и энергию радиотелефонной связи колебательного контура приемника. Для этого на панели установки есть тумблер, подключающий поочередно механизм для подъема грузов разной массы, радиоприемник и датчики света.

Фото 2. (Работа радиостанции)

Энергия ветра преобразуется в механическую энергию.

При хорошей мощности ветра можно поймать различные радиостанции.

Датчики света показывают зависимость напряжения от мощности ветра. Сегодня ветровая установка представляет собой ветряное колесо, устанавливаемое достаточно высоко (50-100 метров) над землей, так как скорость ветра возрастает с высотой. Диаметр ветряного колеса в проектных разработках в различных странах составляет 30-100 метров. Такие большие размеры связаны с желанием получить большую мощность одного агрегата, так как стоимость электроэнергии уменьшается с ростом мощности.

2.2.Энергия солнца.

1) Использование.

Солнечная энергия является экологически чистой энергией. Эксперты утверждают, что станция может производить достаточно энергии для снабжения 8 тысяч жилищ. Ряды вырабатывающих электроэнергию солнечных панелей занимают площадь около 60 га в самой солнечной европейской долине на юге Португалии.

Солнечные батареи просты и удобны в использовании, их можно устанавливать где угодно: на крышах и стенах жилых и производственных помещений, на специально оборудованных открытых площадках в регионах с большим числом солнечных дней (например, в пустынях) и даже вшивать в одежду (Рисунок 7).

Испанская компания Sun Red разработала проект мотоцикла, использующего для передвижения энергию Солнца. Поскольку пространства для размещения солнечных батарей на двухколесной машине немного, в Sun Red предусмотрели раздвижной кожух из фотоэлементов, закрывающий водителя (Рисунок 8).

Существуют самолеты, например именуемый Solar Impulse, создателем которого является Бертранд Пиккард, которые летают исключительно за счет солнечной энергии (Рисунок 9).

2) Экспериментальная модель солнечной станции (СЭС).

Она состоит из фотоэлемента, который освещается лампой имитирующей солнце. Фотоэлемент имитирует работу Солнечной электростанции (СЭС). Все данные моделируем с помощью компьютер (Рисунок 10) а, так же как и для ВЭУ.

Мы изучили три зависимости и получили следующие результаты.

а) Мощность вырабатываемой энергии зависит СЭС от времени суток. Угол положение лампы можно менять, тем самым, имитируя изменение времени суток.

График зависимости:

б) Мощность вырабатываемой энергии СЭС зависит от широты местности. Изменяя расстояние до фотоэлемента, мы как бы измененяем широту местности, где находится СЭС.

График зависимости:

в) Мощность вырабатываемой энергии СЭС зависит от времени года. Изменяя яркость лампы, мы как бы изменяем время года.

График зависимости.

Так же как для ВЗУ, энергия солнца может запасаться в аккумуляторах и использоваться для разных целей. Солнечная энергия преобразуется в механическую энергию для подъёма грузов, в электроэнергию для работы электрических приборов. Также можно преобразовать энергию для работы радио. В нашем эксперименте приемник ловит частоты радиостанций.

3) Проблемы применения фотоэлементов.

Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т.д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30-50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения. Однако, в последнее время начинает активно развиваться производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния. Поэтому тонкоплёночные фотоэлементы дешевле в производстве, более экологичны, но пока имеют меньшее распространение.

3. Профессии, связанные с использование чистых источников энергии

Современному человеку за жизнь придется много раз менять виды деятельности, осваивать новые профессии, поэтому ему необходимо сориентироваться в многообразии профессий.

Профессии рассматриваются на четырех этапах, связанных с реализацией станции:

- проектирование (инженер-электромеханик, авиационный инженер, инженер-геодезист);

- установка (техник по установке, электротехник, вышкомонтажник) (Рисунок 11);

- техническое обслуживание (диспетчер энергосистемы);

- эксплуатация станций (техник по эксплуатации).

3.1. Проектирование:

а) Инженер-электромеханик.

Высококвалифицированный специалист, обладающий глубокими знаниями по теоретической электронике, теории автоматического регулирования, промышленной электронике и вычислительной технике, умеет разбираться в сложнейших чертежах и схемах (Рисунок 12).

б) Инженер-геодезист.

Инженер-геодезист занимается составлением карт и планов местности. Он настраивает геодезические приборы, обрабатывает результаты съемки, производит необходимые вычисления, определяет место установки ВЭУ и солнечных станций.

3.2. Техническое обслуживание:

Диспетчер энергосистемы.

Диспетчер энергосистемы обеспечивает безаварийную работу энергосистемы, наблюдает за панелью, отражающей работу системы и сохраняет готовность к устранению возможных аварий (Рисунок 13).

3.3. Эксплуатация электростанций.

Техник по эксплуатации.

Техник по эксплуатации определяет потенциальные возможности эксплуатации ВЭУ, ветровой режим хозяйственно-экономические условия эксплуатации, эффективность ветряного двигателя.

4. Вывод

Человечеству необходимо уже сейчас, не растратив природных богатств, перейти на чистые источники энергии. Их надо рассматривать не с точки зрения конкурентной способности по сравнению с традиционными способами энергетики, а отвести роль важного, иногда вспомогательного направления, способного эффективно дополнять уже используемые энергетические средства и заменять их.

5. Список используемой литературы

1. М.А.Станкович, Э.Э.Шпильрейн. “Энергетика. Проблемы и перспективы”. Издательство. Москва, Энергия, 1981.

2. Б.М Берковский, В.А.Кузьминов. “Возобновляемые источники на службе у человечества” М: Изд-во "Мир". 1976. 295 с.

3. Глобальная энергетическая проблема / Под общ. ред. И.Д. Иванова.- М.: Мысль, 198.

4. Краффт А.Эрике. Будущее космической индустрии М.: Машиностроение.1979 г.

5. Дж.Твайделл, А.Уэйр. “Возобновляемые источники энергии”. Издательство: М.: Энергоатомиздат, год: 1990.

6. Б.Бринкворт “Солнечная энергия для космоса”.

7. Я.И. Шефтер “Использование энергия ветра”. М.: Энергоатомиздат, 1983 г.

8. Энциклопедический словарь А.Б. Мигдала. София: Наука и изкуство, 1990.

Интернет ресурсы:

http://revolution.allbest.ru/physics/00016158_0.html

http://revolution.allbest.ru/ecology/00005949_0.html

http://fueloff.narod.ru/wind/dop1.htm

Возобновляемые источники энергии с их технологиями производства и применения признаны мировым сообществом в результате загрязнения использования ископаемых видов топлива как альтернативный вид топлива.

Слово «возобновляемые» означает, что они не полагаются на источники, которые ограничены в количестве , они полагаются на практически неисчерпаемое Солнце.

Во всех случаях энергия огромна, но она распределена по территории и нестабильна поэтому, в основном, себестоимость дорогая.

Прискорбно, но это делает большинство возобновляемых источников энергии нерентабельными для крупномасштабных проектов, за исключением гидроэнергетики, где природа сконцентрировала возобновляемые энергоресурсы. Гидроэнергетика имеет много привлекательных и ценных функций, но законы физики неумолимы.

К возобновляемым ресурсам относятся

Гидроэнергетика

Гидроэлектростанции (ГЭС для краткости) являются прочно установившимся и надежным возобновляемым источником энергии, который поставляет большую часть электрической энергии в горных странах, как Норвегия и Швейцария.

Однако во всем мире есть ограничение по количеству подходящих гор и не получается поставлять более чем около трех процентов мировых энергетических потребностей.

Электроэнергия, произведенная на ГЭС должна передаваться на большие расстояния и линии электропередач должны иметь малые потери.

Возобновляемые источники энергии как является относительно безопасным, с показателем смертности около четырех несчастных случаев за тысячу мегаватт. Плотины, которые держат воду должны быть надежны и не представлять опасность в случае разрушения. Однако иногда случается, особенно с земляной плотиной, что вода начинает сочиться через небольшие каналы, постепенно ослабляя плотину, пока не прорвёт. Стена воды затем сметает все на своем пути. В период с 1969 более чем восемь плотин разрушено, со средним числом погибших более чем 200 человек. Озера у плотины обеспечивают среду обитания для диких животных и могут быть популярным для людей. Однако во время засухи уровень воды падает и предоставляет уродливые полосы грязи. Кроме того эти озера могут уничтожить живописные долины с деревнями и ценными сельскохозяйственными землями.

Ветер

Из остальных источников возобновляемой энергии ветер является наиболее перспективным. Ветряные мельницы использовались с древних времен, и теперь ветровые генераторы привычная картина в сельской местности. Они имеют несколько недостатков, однако, основной, что ветер не постоянен и выходная мощность колеблется. При порывах ветра колебания усиливаются, потому что выходная мощность пропорционально кубу скорости ветра. Это означает, что энергия доступна только в течение ограниченного диапазона скоростей ветра, когда скорость мала производится очень мало энергии. В то время если будет ураган, то превышается предел безопасности и необходимо избежать катастрофического ущерба.

Общие ресурсы ветра в большинстве не удовлетворяют все наши энергетические потребности, и не всегда могут быть реализованы из-за высокой стоимости (два или три раза дороже угольной энергетики), ненадежностью и необходимости большого количество необходимых земель. Это однако может внести полезный вклад, если затраты могут быть значительно снижены.

Энергия ветра удивительно опасна: пять несчастных случаев на тысячу мегаватт. Это из-за большого количества турбин, которые неизбежно опасные. Кроме того есть опасность при строительстве и техническом обслуживании.

Экологическое воздействие ветровых турбин все шире признается. Они должны быть построены на открытых позициях, где их можно увидеть на много км вокруг. Они излучают стойкий жужжащий звук, который люди, живущие по соседству считают нетерпимым. Часто люди, которые переехали для спокойствия, вынуждены покидать место с ветроэлектростанциями. Ветровые электростанции могут быть построены вдоль берега, но это увеличивает стоимость и может представлять опасность для судоходства.

Несмотря на интенсивную работу в течение многих лет возобновляемые источники энергии в виде ветров все еще нерентабельны, и в большинстве случаев они опираются на массовые государственные субсидии. Исследования продолжаются, чтобы преодолеть эти трудности, но пока неразумно развертывать ветровые турбины в больших масштабах.

Против ветровой энергии иногда утверждается, что лопасти убивают большое количество птиц, согласно оценкам, около 70 000 в год в Соединенных Штатах. Эта цифра соответствует числу убитых птиц на автомагистралях машинами.

Приливные

Некоторые реки лиманы формируются так, что они подвергаются высоким приливам. Когда высокий прилив, морская вода поступает на определенное расстояние от моря. Во время отлива вода снова течет обратно к морю. Этот поток воды может вращать турбины и генерировать электричество. Такое устройство работает в устье реки ла-Ранс во Франции в течение многих лет производя 65MW. Это надежный источник, хотя пиковые периоды варьируются в зависимости от Луны и Солнца, поэтому электричество не всегда доступно когда это нужно.

Стоимость производства примерно вдвое дороже от обычной электростанции. Это практически осуществимо, но вряд ли привлекательно для перспективы.

Волна

Возобновляемые ресурсы как использование волн огромны, но трудно сосредотачиваемые. Построено несколько устройств для этого, но результат не является экономически эффективным.

Одно такое устройство, стоимостью более миллионов долларов в Великобритании имеет мощность 75 кВт, достаточно только для 25 внутренних электрических нагревателей.

Опасность в том, что огромные волны могут появиться на милость бури, которые могут уничтожить оборудование в течение нескольких минут.

Солнечная

Солнце излучает энергию на землю в среднем около 200 ватт на квадратный метр так, что это возобновляемые ресурсы, которые мы получаем пропорционально площади. По оценкам, для удовлетворения энергетических потребностей четырех домов требует коллектор с размером большого радиотелескопа. Солнечный свет может использоваться непосредственно для нагрева воды, циркулирующей в трубах на крыше. Этот процесс разумен экономически и широко используется. Тем не менее, должен быть дополнительный источник топлива, когда солнце не светит. Можно сфокусировать солнечные лучи на котле из сотен зеркал. Производство пара может использоваться для привода малых турбин для выработки электроэнергии. Недостатком является то, что зеркала должны постоянно быть повернуты дорогостоящими сервомеханизмами, чтобы сконцентрировать лучи солнца на бойлере. Так что этот весь процесс является нерентабельным.

Электричество можно также получить с помощью фотоэлектрических элементов. Это дороговато, чтобы сделать производство электроэнергии с необходимым напряжением. Это экономически не выгодно для крупномасштабного производства, но очень полезно для выработки электроэнергии в тех случаях, когда другие источники невозможны или практически нецелесообразны, например, для спутников или светофоров в отдаленных районах.

Таким образом, возобновляемые ресурсы в виде солнечных лучей, имеют небольшие приложения, которые несомненно будут разрабатываться для уменьшении стоимости светоэлектрических элементов. Пока это не совсем практический экономический возобновляемый источник энергии для основных потребностей.

В некоторых местах горячая вода бьет из земли. Это может использоваться в качестве возобновляемых ресурсов, но в небольших масштабах в весьма немногих местах. В других местах можно просверлить две близлежащих скважины и затем перекачивать воду вниз, где жарко и извлекать с другой трубы. Пройдя через скалы, вода нагревается и это является источником возобновляемой энергии. Однако если тепло близко и быстро используется вверху, то только тогда есть польза.

Испытания показывают, что этот процесс является абсолютно нерентабельным.

Себестоимость производства энергии

В нашем обществе цена ресурсов и себестоимость имеют решающее значение. Даже небольшой разницы в цене достаточно, чтобы одно возобновляемое сырье превалировало над другим. С возобновляемыми источниками энергии положение является более сложным, потому что выбор зависит от взвешивания преимуществ и недостатков каждого источника. Это сложно, потому что они часто несоизмеримы: сколько, например, готовы мы платить за повышенную безопасность или уменьшить воздействие на окружающую среду? И наконец невозможно оценить стоимость нарушения экологии, например, из-за глобального потепления и изменения климата. Эти расходы могли бы быть величайшими из всех.

Иногда говорят, что исследования будут совершенствовать существующие источники и тем самым устранят текущие недостатки. Как правило, это верно.

Но в некоторых случаях недостаток является следствием законов физики, и тогда его никогда не преодолеть. Примером является колеблющийся характер энергии ветра. Это просто не возможно поддерживать ветер постоянным все время.

Во всем мире потребность в возобновляемом сырье настолько актуальна, что важно использовать существующие природные возобновляемые источники энергии и они имеют перспективы развития. Конечно, необходимо продолжать исследования в области новых источников, но мы не можем ждать. Уже в течение многих лет миллионы людей страдают от нехватки энергетических ресурсов.

Исследования показывают, что все возобновляемые и невозобновляемые ресурсы имеют серьезные недостатки: нефть и природный газ быстро заканчиваются. В любом случае, всё ископаемое топливо загрязняют землю, особенно уголь. Гидроэнергетика является ограниченной, ветровая и солнечная энергия являются ненадежными.

Если это конец истории будущее будет мрачным. Однако есть еще один