Меню
Бесплатно
Главная  /  Прически  /  Аксиомы кольца. Простейшие свойства колец. Подгруппа. критерий подгруппы

Аксиомы кольца. Простейшие свойства колец. Подгруппа. критерий подгруппы

Непустое множество К, на котором заданы две бинарные операции-сложение (+) и умножение ( ), удовлетворяющие условиям:

1) относительно операции сложения К - коммутативнаятруппа;

2) относительно операции умножения К - полугруппа;

3) операции сложения и умножения связаны законом дистрибутивности, т. е. (a+b)с=ас+bс, с(a+b) =ca+cb для всех а, b, c K , называется кольцом (К,+, ).

Структура (К, +) называется аддитивной группой кольца. Если операция умножения коммутативна, т. е. ab=ba. для всех а , b , то кольцо называется коммутативным.

Если относительно операции умножения существует единичный элемент, который в кольце принято обозначать единицей 1,. то говорят, что К есть кольцо с единицей.

Подмножество L кольца называется подкольцом, если L - подгруппа аддитивной группы кольца и L замкнуто относительно операции умножения, т. е. для всех a, b L выполняется а+b L и ab L.

Пересечение подколец будет подкольцом. Тогда, как и в случае групп, подкольцом, порожденным множеством S K, называется пересечение всех подколец К, содержащих S.

1. Множество целых чисел относительно операций умножения и сложения (Z, +, )-коммутативное кольцо. Множества nZ целых чисел, делящихся на п, будет подкольцом без единицы при п>1.

Аналогично множество рациональных и действительных чисел - коммутативные кольца с единицей.

2. Множество квадратных матриц порядка п относительно-операций сложения и умножения матриц есть кольцо с единицей Е - единичной матрицей. При п>1 оно некоммутативное.

3. Пусть K-произвольное коммутативное кольцо. Рассмотрим всевозможные многочлены

с переменной х и коэффициентами а 0 , а 1 , а 2 , ..., а n , из К. Относительно алгебраических операций сложения и умножения многочленов- это коммутативное кольцо. Оно называется кольцом многочленов К от переменной х над кольцом К (например, над кольцом целых, рациональных, действительных чисел). Аналогично определяется кольцо многочленов K от т переменных как кольцо многочленов от одной переменной х т над кольцом K.



4. Пусть X - произвольное множество, К -произвольное кольцо. Рассмотрим множество всех функций f: Х К, определенных на множестве X со значениями в К Определим сумму и произведение функций, как обычно, равенствами

(f+g)(x)=f(x)+g(x); (fg)(x)=f(x)g(x),

где + и - операции в кольце К.

Нетрудно проверить, что все условия, входящие в определение кольца, выполняются, и построенное кольцо будет коммутативным, если коммутативно исходное кольцо K . Оно называется кольцом функций на множестве X со значениями в кольце К.

Многие свойства колец - это переформулированные соответствующие свойства групп и полугрупп, например: a m a n =a m + n , (а т) п =а тп для всех m , n и всех a .

Другие специфические свойства колец моделируют свойства чисел:

1) для всех a a 0=0 a=0;

2) .(-а)b=а(-b)=-(ab) ;

3) - a=(-1)a .

Действительно:

2) 0=a (аналогично (-a)b=-(ab));

3) используя второе свойство, имеем-a= (-a)1 =a(-1) = (-1)a .

Поле

В кольцах целых, рациональных и действительных чисел из того, что произведение ab=0, следует, что либо а =0, либо b =0. Но в кольце квадратных матриц порядка n >1 это свойство уже не выполняется, так как, например, = .

Если в кольце К ab=0 при а 0, b , то а называется левым, а b - правым делителем нуля. Если в К нет делителей нуля (кроме элемента 0, который является тривиальным делителем нуля), то K называется кольцом без делителей нуля.

1. В кольце функции f: R R на множестве действительных чисел R рассмотрим функции f 1 (x)=|x|+x; f 2 (x) =|x|-x. Для них f 1 (x) =0 при x и f 2 (x )=0 при x , а поэтому произведение f 1 (x) f 2 (x) - нулевая функция, хотя f 1 (x) и f 2 (x) . Следовательно, в этом кольце есть делители нуля.

2. Рассмотрим множество пар целых чисел (а, b), в котором заданы операции сложения и умножения:

(a 1 , b 1)+(a 2 , b 2)=(a 1 +a 2 , b 1 +b 2);

(a 1 , b 1)(a 2 , b 2)= (a 1 a 2 , b 1 b 2).

Это множество образует коммутативное кольцо с единицей (1,1) и делителями нуля, так как (1,0)(0,1)=(0,0).

Если в кольце нет делителей нуля, то в нем выполняется закон сокращения, т. е. ab=ac, а =с. Действительно, ab-ac=0 a(b-c)=0 (b-c)=0 b=c.

Пусть К - кольцо, с единицей. Элемент а называется обратимым, если существует такой элемент а -1 , для которого aa -1 =a -1 a=1 .

Обратимый элемент не может быть делителем нуля, так как. если ab =0 , то a -1 (ab) =0 (a -1 a)b=0 1b=0 b=0 (аналогично ba=0 ).

Теорема. Все обратимые элементы кольца К с единицей образуют группу относительно умножения.

Действительно, умножение в К ассоциативно, единица содержится во множестве обратимых элементов и произведение не выводит из множества обратимых элементов, так как если а и b обратимы, то
(аb) -1 =b -1 a -1 .

Важную алгебраическую структуру образуют коммутативные кольца К, в которых каждый ненулевой элемент обратим, т. е. относительно операции умножения множество K \{0} образует группу. В таких кольцах определены три операции: сложение, умножение и деление.

Коммутативное кольцо Р с единицей 1 0, в котором каждый ненулевой элемент обратим, называется полем.

Относительно умножения все отличные от нуля элементы поля образуют группу, которая называется мультипликативной группой поля.

Произведение аb -1 записывается в виде дроби и имеет смысл лишь при b 0 . Элемент является единственным решением уравнения bx=a. Действия с дробями подчиняются привычным для нас правилам:

Докажем, например, второе из них. Пусть х= и у= - решения уравнений bx=a, dy=c. Из этих уравнений следует dbx=da, bdy=bc bd(x+y)=da+bc t= - единственное решение уравнения bdt=da+bc.

1. Кольцо целых чисел не образует поля. Полем является множество рациональных и множество действительных чисел.

8.7. Задания для самостоятельной работы по главе 8

8.1. Определить, является ли операция нахождения скалярного произведения векторов n-мерного евклидового пространства коммутативной и ассоциативной. Обосновать ответ.

8.2. Определить, является ли множество квадратных матриц порядка n относительно операции умножения матриц, группой или моноидом.

8.3. Указать, какие из следующих множеств образуют группу относительно операции умножения:

а) множество целых чисел;

б) множество рациональных чисел;

в) множество действительных чисел, отличных от нуля.

8.4. Определить, какие из следующих структур образует множество квадратных матриц порядка n с определителем, равным единице: относительно обычных операций сложения и умножения матриц:

а) группу;

б) кольцо;

8.5. Указать, какую структуру образует множество целых чисел относительно операции умножения и сложения:

а) некоммутативное кольцо;

б) коммутативное кольцо;

8.6. Какую из перечисленных ниже структур образует множество матриц вида с действительными a и b относительно обычных операций сложения и умножения матриц:

а) кольцо;

8.7. Какое число нужно исключить из множества действительных чисел, чтобы оставшиеся числа образовывали группу относительно обычной операции умножения:

8.8. Выяснить, какую из следующих структур образует множество, состоящее из двух элементов a и e, с бинарной операцией, определенной следующим образом:

ee=e, ea=a, ae=a, aa=e.

а) группу;

б) абелеву группу.

8.9. Являются ли кольцом четные числа относительно обычных операций сложения и умножения? Обосновать ответ.

8.10. Является ли кольцом совокупность чисел вида a+b , где a и b – любые рациональные числа, относительно операций сложения и умножения? Ответ обосновать.

называется порядком элемента а. Если такого n не существует, то элемент а называется элементом бесконечного порядка.

Теорема 2.7 (малая теорема Ферма). Если a G и G конечная группа, то a |G| =e .

Примем без доказательства.

Напомним, что каждая группа G, ° является алгеброй с одной бинарной операцией, для которой выполняются три условия, т.е. указанные аксиомы группы.

Подмножество G 1 множества G с той же операцией, что и в группе, называется подгруппой, если G 1 , ° является группой.

Можно доказать, что непустое подмножество G 1 множества G является подгруппой группы G, ° тогда и только тогда, когда множество G 1 вместе с любыми элементами а и b содержит элемент а° b -1 .

Можно доказать следующую теорему.

Теорема 2.8 . Подгруппа циклической группы является циклической.

§ 7. Алгебра с двумя операциями. Кольцо

Рассмотрим алгебры с двумя бинарными операциями.

Кольцом называется непустое множество R , на котором введены две бинарные операции + и ° , называемые сложением и умножением такие, что:

1) R; + является абелевой группой;

2) умножение ассоциативно, т.е. для a,b,c R: (a ° b ° ) ° c=a ° (b ° c) ;

3) умножение дистрибутивно относительно сложения, т.е. для

a,b,c R: a° (b+c)=(a° b)+(а ° c) и (а +b)° c= (a° c)+(b° c).

Кольцо называется коммутативным, если для a,b R: a ° b=b ° a .

Кольцо записываем как R; +, ° .

Так как R является абелевой (коммутативной) группой относительно сложения, то она имеет аддитивную единицу, которую обозначают через 0 или θ и называют нулем. Аддитивную обратную для a R обозначают через -а. При этом в любом кольце R имеем:

0 +x=x+ 0 =x, x+(-x)=(-x)+x=0 , -(-x)=x.

Тогда получаем, что

x° y=x° (y+ 0 )=x° y+ x° 0 x° 0 =0 для х R; x° y=(х + 0 )° y=x° y+ 0 ° y 0 ° y=0 для y R.

Итак, мы показали, что для х R: x ° 0 = 0° х = 0. Однако из равенства x ° y=0 не следует, что х= 0 или у= 0. Покажем это на примере.

Пример. Рассмотрим множество непрерывных на отрезке функций. Введем для этих функций обычные операции сложения и умножения: f(x)+ ϕ (x) и f(x)· ϕ (x) . Как легко видеть, получим кольцо, которое обозначается C . Рассмотрим функцию f(x) и ϕ (x) , изображенные на рис. 2.3. Тогда получим, что f(x) ≡ / 0 и ϕ (x) ≡ / 0, но f(x)· ϕ (x) ≡0.

Мы доказали, что произведение равно нулю, если равен нулю один из множителей: a ° 0= 0 для a R и на примере показали, что может быть, что a ° b= 0 для a ≠ 0 и b ≠ 0.

Если в кольце R имеем, что a ° b= 0, то а называется левым, а b правым делителями нуля. Элемент 0 считаем тривиальным делителем нуля.

f(x)·ϕ(x)≡0

ϕ (x)

Коммутативное кольцо без делителей нуля, отличных от тривиального делителя нуля, называют целостным кольцом или областью целостности.

Легко видеть, что

0 =x° (y+(-y))=x° y+x° (-y), 0 =(x+(-x))° y=x° y+(-x)° y

и поэтому x ° (-y)=(-x) ° y является обратным элементом для элемента х° у, т.е.

х ° (-у ) = (-х )° у = -(х ° у ).

Аналогично можно показать, что (- х) ° (- у) = х° у.

§ 8. Кольцо с единицей

Если в кольце R существует единица относительно умножения, то эту мультипликативную единицу обозначают через 1.

Легко доказать, что мультипликативная единица (как и аддитивная) единственна. Мультипликативную обратную для a R (обратную по умножению) будем обозначать через а-1 .

Теорема 2.9 . Элементы 0 и 1 являются различными элементами ненулевого кольца R .

Доказательство. Пусть R содержит не только 0. Тогда для a ≠ 0 имеем а° 0= 0 и а° 1= а ≠ 0, откуда следует, что 0 ≠ 1, ибо если бы 0= 1, то и их произведения на а совпадали бы.

Теорема 2.10 . Аддитивная единица, т.е. 0, не имеет мультипликативного обратного.

Доказательство. а° 0= 0° а= 0 ≠ 1 для а R . Таким образом, ненулевое кольцо никогда не будет группой относительно умножения.

Характеристикой кольца R называют наименьшее натуральное число k

такое, что a + a + ... + a = 0 для всех a R . Характеристика кольца

k − раз

записывается k=char R . Если указанного числа k не существует, то полагаем char R= 0.

Пусть Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел; С – множество всех комплексных чисел.

Каждое из множеств Z, Q, R, C с обычными операциями сложения и умножения является кольцом. Эти кольца являются коммутативными, с мультипликативной единицей, равной числу 1. Эти кольца не имеют делителей нуля, следовательно, являются областями целостности. Характеристика каждого из этих колец равна нулю.

Кольцо непрерывных на функций (кольцо C ) тоже является кольцом с мультипликативной единицей, которая совпадает с функцией, тождественно равной единице на . Это кольцо имеет делители нуля, поэтому не является областью целостности и char C= 0.

Рассмотрим ещё один пример. Пусть М - непустое множество и R= 2M - множество всех подмножеств множества М. На R введем две операции: симметрическую разность А+ В= А В (которую назовём сложением) и пересечение (которое назовём умножением). Можно убедиться, что получили

кольцо с единицей; аддитивной единицей этого кольца будет , а мультипликативной единицей кольца будет множество М. Для этого кольца при любом А, А R , имеем: А+ А = А А= . Следовательно, charR = 2.

§ 9. Поле

Полем называется коммутативное кольцо, у которого ненулевые элементы образуют коммутативную группу относительно умножения.

Приведем прямое определение поля, перечисляя все аксиомы.

Поле – это множество P с двумя бинарными операциями «+ » и «° », называемыми сложением и умножением, такими, что:

1) сложение ассоциативно: для a, b, c R: (a+b)+c=a+(b+c) ;

2) существует аддитивная единица: 0 P, что для a P: a+0 =0 +a=a;

3) существует обратный элемент по сложению: для a P (-a) P:

(-a)+a=a+(-a)=0;

4) сложение коммутативно: для a, b P: a+b=b+a ;

(аксиомы 1 – 4 означают, что поле есть абелева группа по сложению);

5) умножение ассоциативно: для a, b, c P: a ° (b ° c)=(a ° b) ° c ;

6) существует мультипликативная единица: 1 P , что для a P:

1 ° a=a° 1 =a;

7) для любого ненулевого элемента (a ≠ 0) существует обратный элемент по умножению: для a P, a ≠ 0, a -1 P: a -1 ° a = a ° a -1 = 1;

8) умножение коммутативно: для a,b P: a ° b=b ° a ;

(аксиомы 5 – 8 означают, что поле без нулевого элемента образует коммутативную группу по умножению);

9) умножение дистрибутивно относительно сложения: для a, b, c P: a° (b+c)=(a° b)+(a° c), (b+c) ° a=(b° a)+(c° a).

Примеры полей:

1) R;+, - поле вещественных чисел;

2) Q;+, - поле рациональных чисел;

3) C;+, - поле комплексных чисел;

4) пусть Р 2 ={0,1}. Определим, что 1 +2 0=0 +2 1=1,

1 +2 1=0, 0 +2 0=0, 1×0=0×1=0×0=0, 1×1=1. Тогда F 2 = P 2 ;+ 2 , является полем и называется двоичной арифметикой.

Теорема 2.11 . Если а ≠ 0, то в поле единственным образом разрешимо уравнение а° х=b .

Доказательство . a° x=b a-1 ° (a° x)=a-1 ° b (a-1 ° a)° x=a-1 ° b

Fsb4000 писал(а):

2. а)делимая абелева группа не имеет максимальных подгрупп

Думаю, хватит уже полных решений, да? Модераторы ведь зароют за то, что я Вам уже две задачи полностью расписал!!! Посему, чтобы их не злить, ограничимся идеями.

Ниже мы везде считаем, что натуральный ряд начинается с единицы.

Предположите, что --- делимая группа и --- максимальная подгруппа в . Рассмотрите

Докажите, что --- подгруппа в , содержащая . В силу максимальности возможны только два случая: или .

Рассмотрите каждый из случаев по отдельности и придите к противоречию. В случае возьмите и докажите, что

есть собственная подгруппа в , содержащая и не равная . В случае зафиксируйте и , такие что и покажите, что

является собственной подгруппой в , содержащей и не совпадающей с .

Добавлено спустя 10 минут 17 секунд:

Fsb4000 писал(а):

б) привести примеры делимых абелевых групп,могут ли они быть конечными?

Самый простой пример --- это . Ну или , --- что Вам больше нравится.

Насчёт конечности... конечно же делимая группа не может быть конечной (за исключением тривиального случая, когда группа состоит из одного нуля). Предположите, что --- конечная группа. Докажите, что для некоторого и всех . Потом возьмите такое и узрите, что уравнение неразрешимо при ненулевом .

Добавлено спустя 9 минут 56 секунд:

Fsb4000 писал(а):

4. Построить пример коммутативного и ассоциативного кольца R ()(), в котором нет максимальных идеалов.

Возьмите абелеву группу . Покажите, что она делимая. Умножение задайте следующим образом:

Покажите, что для выполняется всё, что надо.

Упс!.. А ведь ошибся я тут, похоже. Максимальный идеал есть, он равен . Н-да, надо ещё подумать... Но не буду я сейчас ничего думать, а поеду лучше на работу, в универ. Надо же Вам хоть что-то для самостоятельного решения оставить!

Добавлено спустя 10 минут 29 секунд:

Fsb4000 писал(а):

1.Доказать что произвольное кольцо с единицей содержит максимальный идеал.

по решению: 1. По лемме Цорна выберем минимальный положительный элемент, он и будет порождающим идеал.

Ну... не знаю, что Вы там за минимальный положительный элемент такой придумали. По моему, это полная чушь. Какой Вы там в произвольном кольце "положительный элемент" найдёте, если в этом кольце порядок не задан и непонятно, что там "положительное", а что "отрицательное"...

Но насчёт того, что надо применять лемму Цорна --- это правильная идея. Только применять её надо к множеству собственных идеалов кольца. Берёте это множество, упорядочиваете его обычным отношением включения и показываете, что данное упорядочивание индуктивно. Потом, по лемме Цорна, заключаете, что в этом множестве есть максимальный элемент. Этот максимальный элемент и будет максимальным идеалом!

Когда будете показывать индуктивность, то в качестве верхней грани для цепи собственных идеалов берите их объединение. Оно тоже будет идеалом, а собственным оно окажется потому, что единица в него не войдёт. И вот, кстати, в кольце без единицы доказательство через лемму Цорна не проходит, а всё дело именно в этом моменте

Добавлено спустя 34 минуты 54 секунды:

Alexiii писал(а):

Любое кольцо по определению имеет единицу,так что немыслимо писать "кольцо с единицей". Любое кольцо само по себе идеал кольца и притом,очевидно,максимальный...

Нас учили, что наличие единицы в определение кольца не входит. Так что произвольное кольцо не обязано содержать единицу, а если она в нём всё-таки есть, то сказать про такое кольцо, что оно является "кольцом с единицей", более чем уместно!

Думаю, что порывшись в библиотеке, я найду кучу весьма солидных учебников по алгебре, которые подтверждают мою точку зрения. И в матэнциклопедии написано, что кольцо не обязано единицу иметь. Так что всё в условии задачи у автора темы правильно, нечего на него гнать!

Максимальным идеалом кольца, по определению , называется идеал, максимальный по включению среди собственных идеалов . Об этом не то что во многих, а просто во всех учебниках по алгебре написано, в которых теория колец присутствует. Так что насчёт максимальности у Вас ещё один гон совершенно не по теме!

Добавлено спустя 6 минут 5 секунд:

Alexiii писал(а):

Вообще,как я понял из ваших комментов, "кольца с единицией" пишут только для того,чтобы исключить одноэлементный случай.

Совершенно неправильно поняли! "Кольца с единицей" пишут для того, чтобы обозначить наличие единицы в кольце

А колец без единицы полно. К примеру, множество чётных целых чисел с обычными сложением и умножением образуют такое кольцо.


ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ГРУППЫ.

Опр1 .Пусть G не пустое множество элементов произвольной природы. G называется группой

1) На множестве G задана бао °.

2) бао ° ассоциативна.

3) Существует нейтральный элемент nÎG.

4) Для любого элемента из G симметричный ему элемент всегда существует и принадлежит такжеG.

Пример. Множество Z – чисел с операцией +.

Опр2 .Группа называется абелевой , если она коммутативна относительно заданной бао °.

Примеры групп:

1) Z,R,Q «+» (Z+)

Простейшие свойства групп

В группе существует единственный нейтральный элемент

В группе для каждого элемента существует единственный симметричный ему элемент

Пусть G - группа с бао °, тогда уравнения вида:

a°x=b и x°a=b (1) - разрешимы и имеют единственное решение.

Доказательство . Рассмотрим уравнения (1) относительно x. Очевидно, что для а $! а". Так как операция ° - ассоциативна, то очевидно x=b°a" - единственное решение.

34. ЧЕТНОСТЬ ПОДСТАНОВКИ*

Определение 1 . Подстановка называется четной , если она разлагается в произведение четного числа транспозиций, и нечетная в противном случае.

Предложение 1 .Подстановка

Является четной <=> - четная перестановка. Следовательно, количество четных подстановок

из n чисел равно n!\2.

Предложение 2 . Подстановки f и f - 1 имеют один характер четности.

> Достаточно проверить, что если - произведение транспозиций, то <

Пример:

ПОДГРУППА. КРИТЕРИЙ ПОДГРУППЫ.

Опр. Пусть G - группа c бао ° и не пустое подмножество HÌG, тогда H называют подгруппой группы G, если H -подгруппа относительно бао° (т.е. ° - бао на Н. И Н с этой операцией группа).

Теорема (критерий подгруппы). Пусть G - группа относительно операции°, ƹHÎG. H является подгруппой <=> "h 1 ,h 2 ÎH выполняется условие h 1 °h 2 "ÎH (где h 2 " - симметричный элемент к h 2).

Док-во. =>: Пусть H - подгруппа (нужно доказать, что h 1 °h 2 "ÎH). Возьмем h 1 ,h 2 ÎH, тогда h 2 "ÎH и h 1 °h" 2 ÎH (так как h" 2 - симметричный элемент к h 2).

<=: (надо доказать, что H - подгруппа).



Раз H¹Æ , то там есть хотя бы один элемент. Возьмем hÎH, n=h°h"ÎH, т.е. нейтральный элемент nÎH. В качестве h 1 берем n, а в качестве h 2 возьмём h тогда h"ÎH Þ " hÎH симметричный элемент к h также принадлежит H.

Докажем, что композиция любых элементов из Н принадлежит Н.

Возьмём h 1 , а в качестве h 2 возьмём h" 2 Þ h 1 °(h 2 ") " ÎH, Þ h 1 °h 2 ÎH.

Пример. G=S n , n>2, α - некоторый элемент из Х={1,…,n}. В качестве H возьмём не пустое множество H= S α n ={fÎ S n ,f(α)=α}, при действии отображения из S α n α остаётся на месте. Проверяем по критерию. Возьмём любые h 1 ,h 2 ÎH. Произведение h 1 . h 2 "ÎH, т.е H - подгруппа, которая называется стационарной подгруппой элемента α.

КОЛЬЦО, ПОЛЕ. ПРИМЕРЫ.

Опр. Пусть К непустое множество с двумя алгебраическими операциями: сложением и умножением. К называется кольцом , если выполняются следующие условия:

1) К- абелевагруппа(коммутативна относительно заданной бао °) относительно сложения;

2) умножение ассоциативно;

3) умножение дистрибутивно относительно сложения().

Если умножение коммутативно, то К называют коммутативным кольцом . Если относительно умножения есть нейтральный элемент, то К называют кольцом с единицей .

Примеры.

1)Множество Z целых чисел образует кольцо относительно обычных операций сложения и умножения. Это кольцо коммутативно, ассоциативно и обладает единицей.

2) Множества Q рациональных чисел и R действительных чисел являются полями

относительно обычных операций сложения и умножения чисел.

Простейшие свойства колец.

1. Так как К абелева группа относительно сложения, то на К переносятся простейшие свойства групп.

2. Умножение дистрибутивно относительно разности: a(b-c)=ab-ac.

Доказательство. Т.к. ab-ac+ac=ab и a(b-c)+ac=a((b-c)+c)=a(b-c+c)=ab, то a(b-c)=ab-ac.

3. В кольце могут быть делители нуля, т.е. ab=0, но отсюда не следует,что a=0 b=0.

Например, в кольце матриц размера 2´2, существуют элементы не равные нулю такие, что их произведение будет нуль: ,где - играет роль нулевого элемента.

4. a·0=0·а=0.

Доказательство. Пусть 0=b-b. Тогда a(b-b)=ab-ab=0. Аналогично 0·а=0.

5. a(-b)=(-a)·b=-ab.

Доказательство: a(-b)+ab=a((-b)+b)=a·0=0.

6. Если в кольце К существует единица и оно состоит более, чем из одного элемента, то единица не равна нулю, где 1─ нейтральный элемент при умножении; 0 ─ нейтральный элемент при сложении.

7. Пусть К кольцо с единицей, тогда множество обратимых элементов кольца образуют группу относительно умножения, которую называют мультипликативной группой кольца K и обозначают K* .

Опр. Коммутативное кольцо с единицей, содержащее не менее двух элементов, в котором любой отличный от нуля элемент обратим, называется полем .

Простейшие свойства поля

1. Т.к. поле - кольцо, то все свойства колец переносятся и на поле.

2. В поле нет делителей нуля,т.е. если ab=0 ,то a=0 или b=0.

Доказательство.

Если a¹0 ,то $ a -1 . Рассмотрим a -1 (ab)=(a -1 a)b=0 , а если a¹0 ,то b=0, аналогично если b¹0

3. Уравнение вида a´x=b, a¹0, b – любое, в поле имеет единственное решение x= a -1 b, или х=b/a.

Решение этого уравнения называется частным.

Примеры. 1)PÌC, P - числовое поле. 2)P={0;1};

Аннотация: В данной лекции рассматриваются понятия колец. Приведены основные определения и свойства элементов кольца, рассмотрены ассоциативные кольца. Рассмотрен ряд характерных задач, доказаны основные теоремы, а также приведены задачи для самостоятельного рассмотрения

Кольца

Множество R с двумя бинарными операциями (сложением + и умножением ) называется ассоциативным кольцом с единицей , если:

Если операция умножения коммутативна, то кольцо называется коммутативным кольцом. Коммутативные кольца являются одним из главных объектов изучения в коммутативной алгебре и алгебраической геометрии.

Замечания 1.10.1 .

Примеры 1.10.2 (примеры ассоциативных колец) .

Мы уже убедились, что группа вычетов (Z n ,+)={C 0 ,C 1 ,...,C n-1 }, C k =k+nZ , по модулю n с операцией сложения , является коммутативной группой (см. пример 1.9.4, 2)).

Определим операцию умножения, полагая . Проверим корректность этой операции . Если C k =C k" , C l =C l" , то k"=k+nu , l"=l+nv , , и поэтому C k"l" =C kl .

Так как (C k C l)C m =C (kl)m =C k(lm) =C k (C l C m), C k C l =C kl =C lk =C l C k , C 1 C k =C k =C k C 1 , (C k +C l)C m =C (k+l)m =C km+lm =C k C m +C l C m , то является ассоциативным коммутативным кольцом с единицей C 1 кольцом вычетов по модулю n ).

Свойства колец (R,+,.)

Лемма 1.10.3 (бином Ньютона) . Пусть R - кольцо с 1 , , . Тогда:

Доказательство.

Определение 1.10.4 . Подмножество S кольца R называется подкольцом , если:

а) S - подгруппа относительно сложения в группе (R,+) ;

б)для имеем ;

в)для кольца R с 1 предполагается, что .

Примеры 1.10.5 (примеры подколец) .

Задача 1.10.6 . Описать все подкольца в кольце вычетов Z n по модулю n .

Замечание 1.10.7 . В кольце Z 10 элементы, кратные 5 , образуют кольцо с 1 , не являющееся подкольцом в Z 10 (у этих колец различные единичные элементы).

Определение 1.10.8 . Если R - кольцо, и , , ab=0 , то элемент a называется левым делителем нуля в R , элемент b называется правым делителем нуля в R .

Замечание 1.10.9 . В коммутативных кольцах, естественно, нет различий между левыми и правыми делителями нуля.

Пример 1.10.10 . В Z , Q , R нет делителей нуля.

Пример 1.10.11 . Кольцо непрерывных функций C имеет делители нуля. Действительно, если


то , , fg=0 .

Пример 1.10.12 . Если n=kl , 1

Лемма 1.10.13 . Если в кольце R нет (левых) делителей нуля, то из ab=ac , где , , следует, что b=c (т. е. возможность сокращать на ненулевой элемент слева, если нет левых делителей нуля; и справа, если нет правых делителей нуля).

Доказательство. Если ab=ac , то a(b-c)=0 . Так как a не является левым делителем нуля, то b-c=0 , т. е. b=c .

Определение 1.10.14 . Элемент называется нильпотентным , если x n =0 для некоторого . Наименьшее такое натуральное число n называется степенью нильпотентности элемента .

Ясно, что нильпотентный элемент является делителем нуля (если n>1 , то , ). Обратное утверждение неверно (в Z 6 нет нильпотентных элементов, однако 2 , 3 , 4 - ненулевые делители нуля).

Упражнение 1.10.15 . Кольцо Z n содержит нильпотентные элементы тогда и только тогда, когда n делится на m 2 , где , .

Определение 1.10.16 . Элемент x кольца R называется идемпотентом , если x 2 =x . Ясно, что 0 2 =0 , 1 2 =1 . Если x 2 =x и , , то x(x-1)=x 2 -x=0 , и поэтому нетривиальные идемпотенты являются делителями нуля.

Через U(R) обозначим множество обратимых элементов ассоциативного кольца R , т. е. тех , для которых существует обратный элемент s=r -1 (т. е. rr -1 =1=r -1 r ).